Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 465
Filtrar
1.
Am J Hum Biol ; 35(8): e23897, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-36951242

RESUMEN

INTRODUCTION: Multiple studies have reported that milk immune content increases for infants experiencing infectious disease (ID) episodes, suggesting that the immune system of milk (ISOM) offers enhanced protection when needed to combat ID. METHODS: To test the hypothesis that ISOM content and/or activity increases during an infant's ID episode, we characterized milk secretory immunoglobulin A (sIgA; a major ISOM constituent) and in vitro interleukin-6 (IL-6) responses to Salmonella enterica and Escherichia coli, as system-level biomarkers of ISOM activity, in a prospective study among 96 mother-infant dyads in Kilimanjaro, Tanzania. RESULTS: After control for covariates, no milk immune variables (sIgA, Coef: 0.03; 95% CI -0.25, 0.32; in vitro IL-6 response to S. enterica, Coef: 0.23; 95% CI: -0.67, 1.13; IL-6 response to E. coli, Coef: -0.11; 95% CI: -0.98, 0.77) were associated with prevalent ID (diagnosed at the initial participation visit). Among infants experiencing an incident ID (diagnosed subsequent to the initial participation), milk immune content and responses were not substantially higher or lower than the initial visit (sIgA, N: 61; p: 0.788; IL-6 response to S. enterica, N: 56; p: 0.896; IL-6 response to E. coli, N: 36; p: 0.683); this was unchanged by exclusion of infants with ID at the time of initial participation. CONCLUSION: These findings are not consistent with the hypothesis that milk delivers enhanced immune protection when infants experience ID. In environments with a high burden of ID, dynamism may be less valuable to maternal reproductive success than stability in the ISOM.


Asunto(s)
Infecciones por Escherichia coli , Escherichia coli , Inmunoglobulina A Secretora , Interleucina-6 , Leche Humana , Infecciones por Salmonella , Salmonella enterica , Humanos , Femenino , Leche Humana/química , Interleucina-6/análisis , Interleucina-6/inmunología , Salmonella enterica/fisiología , Infecciones por Salmonella/inmunología , Escherichia coli/fisiología , Infecciones por Escherichia coli/inmunología , Recién Nacido , Lactante , Tanzanía , Estudios Prospectivos , Adulto , Estudios Transversales , Técnicas para Inmunoenzimas , Inmunoglobulina A Secretora/análisis , Inmunoglobulina A Secretora/inmunología , Estudios Longitudinales
2.
Lett Appl Microbiol ; 76(1)2023 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-36688773

RESUMEN

The purpose of this study was to determine the effect of the culture method on the resistance of Salmonella Typhimurium in low water activity foods to storage, plasma, and dry heat. Whole black peppers were used as the model food. S. Typhimurium cultured in liquid broth (tryptic soy broth) or solid agar (tryptic soy agar) and inoculated on whole black pepper was stored or treated with cold plasma or dry heat. Inactivation of S. Typhimurium cultured in liquid medium was higher in all the treatments. Liquid-cultured S. Typhimurium showed higher DPPP = O (diphenyl-1-pyrenylphosphine oxide) values compared to the solid-cultured S. Typhimurium after plasma or dry heat treatment. Furthermore, the unsaturated fatty acid and saturated fatty acid ratio (USFA/SFA) was significantly (P < 0.05) reduced from 0.41 to 0.29 when S. Typhimurium was cultured on solid agar. These results suggested that the use of food-borne pathogens cultured on solid agar is more suitable for low water activity food pasteurization studies.


Asunto(s)
Piper nigrum , Salmonella enterica , Salmonella typhimurium/fisiología , Agar , Calor , Serogrupo , Microbiología de Alimentos , Agua , Recuento de Colonia Microbiana , Salmonella enterica/fisiología
3.
Int J Food Microbiol ; 381: 109905, 2022 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-36095868

RESUMEN

Salmonella enterica is one of the leading causes of foodborne gastroenteritis worldwide. In the food production environment, many bacterial species co-exist on surfaces in biofilm structures, which can act as reservoirs of microbial contamination of food products. Polymicrobial biofilms have been shown to have greater tolerance to antimicrobials, such as disinfectants, however the mechanistic basis of this is poorly understood. In this study, S. enterica subsp. enterica serovar Liverpool was co-cultured in mixed-species biofilms with bacteria isolated from the food production environment and challenged with the cationic biocide disinfectant, benzalkonium chloride (BC). Co-culture with the common environmental bacterium Acinetobacter johnsonii resulted in >200-fold higher resistance of S. Liverpool to BC, compared to mono-culture biofilms. The transcriptional response of S. enterica to biofilm co-culture was determined using a dual RNA-seq strategy. Genes controlled by the PhoPQ and PmrAB two-component systems, involved in lipid A modification and associated with cationic antimicrobial peptide resistance (CAMP) of S. Liverpool, were significantly upregulated. Deletion of either the phoP or pmrA genes resulted in an increase in susceptibility to BC, suggesting that activation of their regulons during co-culture enhances BC resistance. S. Liverpool lipid A profiles changed significantly upon co-culturing, with greater incorporation of both phosphoethanolamine and palmitate, which was dependent upon activation of PhoPQ and PmrAB. We conclude that when grown in the presence of A. johnsonii, S. Liverpool increases its tolerance to cationic BC disinfection by remodelling its cell envelope including reducing the net negative charge of lipid A and increasing lipid A acyl density.


Asunto(s)
Desinfectantes , Salmonella enterica , Acinetobacter , Compuestos de Benzalconio/farmacología , Biopelículas , Técnicas de Cocultivo , Desinfectantes/farmacología , Lípido A , Palmitatos , Salmonella enterica/fisiología
4.
Front Immunol ; 12: 757909, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34804044

RESUMEN

Salmonella Infantis has emerged as a major clinical pathogen causing gastroenteritis worldwide in recent years. As an intracellular pathogen, Salmonella has evolved to manipulate and benefit from the cell death signaling pathway. In this study, we discovered that S. Infantis inhibited apoptosis of infected Caco-2 cells by phosphorylating Akt. Notably, Akt phosphorylation was observed in a discontinuous manner: immediately 0.5 h after the invasion, then before peak cytosolic replication. Single-cell analysis revealed that the second phase was only induced by cytosolic hyper-replicating bacteria at 3-4 hpi. Next, Akt-mediated apoptosis inhibition was found to be initiated by Salmonella SopB. Furthermore, Akt phosphorylation increased mitochondrial localization of Bcl-2 to prevent Bax oligomerization on the mitochondrial membrane, maintaining the mitochondrial network homeostasis to resist apoptosis. In addition, S. Infantis induced pyroptosis, as evidenced by increased caspase-1 (p10) and GSDMS-N levels. In contrast, cells infected with the ΔSopB strain displayed faster but less severe pyroptosis and had less bacterial load. The results indicated that S. Infantis SopB-mediated Akt phosphorylation delayed pyroptosis, but aggravated its severity. The wild-type strain also caused more severe diarrhea and intestinal inflammatory damage than the ΔSopB strain in mice. These findings revealed that S. Infantis delayed the cells' death by intermittent activation of Akt, allowing sufficient time for replication, thereby causing more severe inflammation.


Asunto(s)
Carga Bacteriana , Proteínas Bacterianas/fisiología , Células Epiteliales/microbiología , Mucosa Intestinal/microbiología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Salmonella enterica/fisiología , Animales , Apoptosis , Proteínas Bacterianas/genética , Línea Celular Tumoral , Citosol/microbiología , Células Epiteliales/metabolismo , Células Epiteliales/patología , Humanos , Masculino , Ratones Endogámicos C57BL , Mitocondrias/fisiología , Fosforilación , Procesamiento Proteico-Postraduccional , Piroptosis , Salmonelosis Animal/microbiología , Salmonella enterica/enzimología , Salmonella enterica/genética , Salmonella enterica/aislamiento & purificación , Porcinos , Enfermedades de los Porcinos/microbiología , Vacuolas/microbiología
5.
Appl Environ Microbiol ; 87(23): e0168321, 2021 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-34586905

RESUMEN

Enteric pathogens, including Salmonella, are capable of long-term survival after desiccation and resist heat treatments that are lethal to hydrated cells. The mechanisms of dry-heat resistance differ from those of wet-heat resistance. To elucidate the mechanisms of dry-heat resistance in Salmonella, screening of the dry-heat resistance of 108 Salmonella strains, representing 39 serotypes, identified the 22 most resistant and the 8 most sensitive strains for comparative genome analysis. A total of 289 genes of the accessory genome were differently distributed between resistant and sensitive strains. Among these genes, 28 proteins with a putative relationship to stress resistance were selected for to quantify relative gene expression before and after desiccation and expression by solid-state cultures on agar plates relative to cultures growing in liquid culture media. Of these 28 genes, 15 genes were upregulated (P < 0.05) after desiccation or by solid-state cultures on agar plates. These 15 genes were cloned into the low-copy-number vector pRK767 under the control of the lacZ promoter. The expression of 6 of these 15 genes increased (P < 0.05) resistance to dry heat and to treatment with pressure of 500 MPa. Our finding extends the knowledge of mechanisms of stress resistance in desiccated Salmonella to improve control of this bacterium in dry food. IMPORTANCE This study directly targeted an increasing threat to food safety and developed knowledge and targeted strategies that can be used by the food industry to help reduce the risk of foodborne illness in their dry products and thereby reduce the overall burden of foodborne illness. Genomic and physiological analyses have elucidated mechanisms of bacterial resistance to many food preservation technologies, including heat, pressure, disinfection chemicals, and UV light; however, information on bacterial mechanisms of resistance to dry heat is scarce. Mechanisms of tolerance to desiccation likely also contribute to resistance to dry heat, but this assumption has not been verified experimentally. It remains unclear how mechanisms of resistance to wet heat relate to dry-heat resistance. Thus, this study will fill a knowledge gap to improve the safety of dry foods.


Asunto(s)
Desecación , Salmonella enterica , Agar , Regulación Bacteriana de la Expresión Génica , Salmonella enterica/genética , Salmonella enterica/fisiología , Estrés Fisiológico
6.
PLoS Pathog ; 17(8): e1009902, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34460869

RESUMEN

The p21-activated kinase (PAK) family regulate a multitude of cellular processes, including actin cytoskeleton remodelling. Numerous bacterial pathogens usurp host signalling pathways that regulate actin reorganisation in order to promote Infection. Salmonella and pathogenic Escherichia coli drive actin-dependent forced uptake and intimate attachment respectively. We demonstrate that the pathogen-driven generation of both these distinct actin structures relies on the recruitment and activation of PAK. We show that the PAK kinase domain is dispensable for this actin remodelling, which instead requires the GTPase-binding CRIB and the central poly-proline rich region. PAK interacts with and inhibits the guanine nucleotide exchange factor ß-PIX, preventing it from exerting a negative effect on cytoskeleton reorganisation. This kinase-independent function of PAK may be usurped by other pathogens that modify host cytoskeleton signalling and helps us better understand how PAK functions in normal and diseased eukaryotic cells.


Asunto(s)
Actinas/química , Citoesqueleto/química , Infecciones por Salmonella/microbiología , Salmonella enterica/fisiología , Quinasas p21 Activadas/metabolismo , Humanos , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Fosforilación , Factores de Intercambio de Guanina Nucleótido Rho/genética , Factores de Intercambio de Guanina Nucleótido Rho/metabolismo , Infecciones por Salmonella/metabolismo , Infecciones por Salmonella/patología , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo , Quinasas p21 Activadas/genética
7.
PLoS Pathog ; 17(8): e1009280, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34460873

RESUMEN

Salmonella enterica serovar Typhimurium (S. Typhimurium) is a zoonotic pathogen that causes diarrheal disease in humans and animals. During salmonellosis, S. Typhimurium colonizes epithelial cells lining the gastrointestinal tract. S. Typhimurium has an unusual lifestyle in epithelial cells that begins within an endocytic-derived Salmonella-containing vacuole (SCV), followed by escape into the cytosol, epithelial cell lysis and bacterial release. The cytosol is a more permissive environment than the SCV and supports rapid bacterial growth. The physicochemical conditions encountered by S. Typhimurium within the epithelial cytosol, and the bacterial genes required for cytosolic colonization, remain largely unknown. Here we have exploited the parallel colonization strategies of S. Typhimurium in epithelial cells to decipher the two niche-specific bacterial virulence programs. By combining a population-based RNA-seq approach with single-cell microscopic analysis, we identified bacterial genes with cytosol-induced or vacuole-induced expression signatures. Using these genes as environmental biosensors, we defined that Salmonella is exposed to oxidative stress and iron and manganese deprivation in the cytosol and zinc and magnesium deprivation in the SCV. Furthermore, iron availability was critical for optimal S. Typhimurium replication in the cytosol, as well as entC, fepB, soxS, mntH and sitA. Virulence genes that are typically associated with extracellular bacteria, namely Salmonella pathogenicity island 1 (SPI1) and SPI4, showed increased expression in the cytosol compared to vacuole. Our study reveals that the cytosolic and vacuolar S. Typhimurium virulence gene programs are unique to, and tailored for, residence within distinct intracellular compartments. This archetypical vacuole-adapted pathogen therefore requires extensive transcriptional reprogramming to successfully colonize the mammalian cytosol.


Asunto(s)
Adaptación Fisiológica , Proteínas Bacterianas/metabolismo , Citosol/metabolismo , Regulación Bacteriana de la Expresión Génica , Infecciones por Salmonella/microbiología , Salmonella enterica/fisiología , Virulencia , Proteínas Bacterianas/genética , Citosol/microbiología , Islas Genómicas , Células HeLa , Humanos , RNA-Seq , Infecciones por Salmonella/metabolismo
8.
J Virol ; 95(22): e0142421, 2021 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-34431699

RESUMEN

Enteric viruses infect the mammalian gastrointestinal tract and lead to significant morbidity and mortality worldwide. Data indicate that enteric viruses can utilize intestinal bacteria to promote viral replication and pathogenesis. However, the precise interactions between enteric viruses and bacteria are unknown. Here, we examined the interaction between bacteria and coxsackievirus B3, an enteric virus from the picornavirus family. We found that bacteria enhance the infectivity of coxsackievirus B3 (CVB3) in vitro. Notably, specific bacteria are required, as Gram-negative Salmonella enterica, but not Escherichia coli, enhanced CVB3 infectivity and stability. Investigating the cell wall components of both S. enterica and E. coli revealed that structures in the O-antigen or core of lipopolysaccharide, a major component of the Gram-negative bacterial cell wall, were required for S. enterica to enhance CVB3. To determine if these requirements were necessary for similar enteric viruses, we investigated if S. enterica and E. coli enhanced infectivity of poliovirus, another enteric virus in the picornavirus family. We found that while E. coli did not enhance the infectivity of CVB3, E. coli enhanced poliovirus infectivity. Overall, these data indicate that distinct bacteria enhance CVB3 infectivity and stability, and specific enteric viruses may have differing requirements for their interactions with specific bacterial species. IMPORTANCE Previous data indicate that several enteric viruses utilize bacteria to promote intestinal infection and viral stability. Here, we show that specific bacteria and bacterial cell wall components are required to enhance infectivity and stability of coxsackievirus B3 in vitro. These requirements are likely enteric virus specific, as the bacteria for CVB3 differ from poliovirus, a closely related virus. Therefore, these data indicate that specific bacteria and their cell wall components dictate the interaction with various enteric viruses in distinct mechanisms.


Asunto(s)
Infecciones por Coxsackievirus , Enterovirus Humano B/fisiología , Infecciones por Escherichia coli , Escherichia coli/fisiología , Infecciones por Salmonella , Salmonella enterica/fisiología , Animales , Coinfección , Infecciones por Coxsackievirus/microbiología , Infecciones por Coxsackievirus/virología , Infecciones por Escherichia coli/microbiología , Infecciones por Escherichia coli/virología , Células HeLa , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Infecciones por Salmonella/microbiología , Infecciones por Salmonella/virología , Replicación Viral
9.
Food Funct ; 12(17): 8100-8119, 2021 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-34286788

RESUMEN

Human milk oligosaccharides (hMOs) and non-digestible carbohydrates (NDCs) are known to inhibit the adhesion of pathogens to the gut epithelium, but the mechanisms involved are not well understood. Here, the effects of 2'-FL, 3-FL, DP3-DP10, DP10-DP60 and DP30-DP60 inulins and DM7, DM55 and DM69 pectins were studied on pathogen adhesion to Caco-2 cells. As the growth phase influences virulence, E. coli ET8, E. coli LMG5862, E. coli O119, E. coli WA321, and S. enterica subsp. enterica LMG07233 from both log and stationary phases were tested. Specificity for enteric pathogens was tested by including the lung pathogen K. pneumoniae LMG20218. Expression of the cell membrane glycosylation genes of galectin and glycocalyx and inflammatory genes was studied in the presence and absence of 2'-FL or NDCs. Inhibition of pathogen adhesion was observed for 2'-FL, inulins, and pectins. Pre-incubation with 2'-FL downregulated ICAM1, and pectins modified the glycosylation genes. In contrast, K. pneumoniae LMG20218 downregulated the inflammatory genes, but these were restored by pre-incubation with pectins, which reduced the adhesion of K. pneumoniae LMG20218. In addition, DM69 pectin significantly upregulated the inflammatory genes. 2'-FL and pectins but not inulins inhibited pathogen adhesion to the gut epithelial Caco-2 cells through changing the cell membrane glycosylation and inflammatory genes, but the effects were molecule-, pathogen-, and growth phase-dependent.


Asunto(s)
Adhesión Bacteriana , Células Epiteliales/metabolismo , Intestinos/metabolismo , Inulina/metabolismo , Leche Humana/metabolismo , Oligosacáridos/metabolismo , Pectinas/metabolismo , Células CACO-2 , Células Epiteliales/microbiología , Escherichia coli/fisiología , Regulación de la Expresión Génica , Glicosilación , Humanos , Intestinos/microbiología , Klebsiella pneumoniae/fisiología , Leche Humana/química , Salmonella enterica/fisiología
10.
PLoS Comput Biol ; 17(7): e1009140, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34292935

RESUMEN

The metabolic capabilities of the species and the local environment shape the microbial interactions in a community either through the exchange of metabolic products or the competition for the resources. Cells are often arranged in close proximity to each other, creating a crowded environment that unevenly reduce the diffusion of nutrients. Herein, we investigated how the crowding conditions and metabolic variability among cells shape the dynamics of microbial communities. For this, we developed CROMICS, a spatio-temporal framework that combines techniques such as individual-based modeling, scaled particle theory, and thermodynamic flux analysis to explicitly incorporate the cell metabolism and the impact of the presence of macromolecular components on the nutrients diffusion. This framework was used to study two archetypical microbial communities (i) Escherichia coli and Salmonella enterica that cooperate with each other by exchanging metabolites, and (ii) two E. coli with different production level of extracellular polymeric substances (EPS) that compete for the same nutrients. In the mutualistic community, our results demonstrate that crowding enhanced the fitness of cooperative mutants by reducing the leakage of metabolites from the region where they are produced, avoiding the resource competition with non-cooperative cells. Moreover, we also show that E. coli EPS-secreting mutants won the competition against the non-secreting cells by creating less dense structures (i.e. increasing the spacing among the cells) that allow mutants to expand and reach regions closer to the nutrient supply point. A modest enhancement of the relative fitness of EPS-secreting cells over the non-secreting ones were found when the crowding effect was taken into account in the simulations. The emergence of cell-cell interactions and the intracellular conflicts arising from the trade-off between growth and the secretion of metabolites or EPS could provide a local competitive advantage to one species, either by supplying more cross-feeding metabolites or by creating a less dense neighborhood.


Asunto(s)
Biología Computacional/métodos , Interacciones Microbianas/fisiología , Microbiota/fisiología , Modelos Biológicos , Escherichia coli/metabolismo , Escherichia coli/fisiología , Salmonella enterica/metabolismo , Salmonella enterica/fisiología , Análisis Espacio-Temporal
11.
Lett Appl Microbiol ; 73(1): 54-63, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33765334

RESUMEN

Lactic Acid Bacteria (LAB) regulate and maintain the stability of healthy microbial flora, inhibit the adhesion of pathogenic bacteria and promote the colonization of beneficial micro-organisms. The drug resistance and pathogenicity of Salmonella enteritis SE47 isolated from retail eggs were investigated. Meanwhile, Enterococcus faecalis L76 and Lactobacillus salivarius LAB35 were isolated from intestine of chicken. With SE47 as indicator bacteria, the diameters of L76 and LAB35 inhibition zones were 12 mm and 8·5 mm, respectively, by agar inhibition circle method, which indicated that both of them had inhibitory effect on Salmonella, and L76 had better antibacterial effect; two chicken-derived lactic acid bacteria isolates and Salmonella SE47 were incubated with Caco-2. The adhesion index of L76 was 17·5%, which was much higher than that of LAB35 (10·21%) and SE47 (4·89%), this experiment shows that the higher the bacteriostatic effect of potential probiotics, the stronger the adhesion ability; then Caco-2 cells were incubated with different bacteria, and the survival of Caco-2 cells was observed by flow cytometry. Compared with Salmonella SE47, the results showed that lactic acid bacteria isolates could effectively protect Caco-2 cells; finally, after different bacteria incubated Caco-2 cells, according to the cytokine detection kit, the RNA of Caco-2 cells was extracted and transcribed into cDNA, then detected by fluorescence quantitative PCR, the results showed that L76 could protect Caco-2 cells from the invasion of Salmonella SE47, with less cell membrane rupture and lower expression of MIF and TNF genes. Therefore, the lactic acid bacteria isolates can effectively inhibit the adhesion of Salmonella and protect the integrity of intestinal barrier.


Asunto(s)
Antibiosis/fisiología , Huevos/microbiología , Lactobacillales/fisiología , Infecciones por Salmonella/microbiología , Salmonella enterica/fisiología , Animales , Células CACO-2 , Pollos/microbiología , Farmacorresistencia Bacteriana/fisiología , Enterococcus faecalis/aislamiento & purificación , Enterococcus faecalis/fisiología , Humanos , Ligilactobacillus salivarius/aislamiento & purificación , Ligilactobacillus salivarius/fisiología , Probióticos/aislamiento & purificación , Probióticos/farmacología , Salmonella enterica/patogenicidad
12.
PLoS One ; 16(2): e0247325, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33606799

RESUMEN

The human enteric bacterial pathogen Salmonella enterica causes approximately 1.35 million cases of food borne illnesses annually in the United States. Of these salmonellosis cases, almost half are derived from the consumption of fresh, raw produce. Although epiphytic S. enterica populations naturally decline in the phyllosphere, a subset of phytophagous insects have recently been identified as biological multipliers, consequently facilitating the growth of bacterial populations. We investigated whether tomato leaves with macroscopic feeding damage, caused by infestation of adult Western flower thrips (Frankliniella occidentalis), support higher S. enterica populations. To explore this hypothesis, we assessed S. enterica populations in response to thrips feeding by varying insect density, plant age, and the gender of the insect. As a reference control, direct leaf damage analogous to thrips feeding was also evaluated using directed, hydraulic pressure. In a supplementary set series of experiments, groups of F. occidentalis infested tomato plants were later inoculated with S. enterica to determine how prior insect infestation might influence bacterial survival and persistence. Following an infestation period, leaves visibly damaged by adult F. occidentalis supported significantly higher S. enterica populations and resulted in greater amounts of electrolyte leakage (measured as electrical conductivity) than leaves lacking visible feeding damage. Plant age did not significantly influence S. enterica populations or estimates of electrolyte leakage, independent of initial infestation. Additionally, the gender of the insect did not uniquely influence S. enterica population dynamics. Finally, applications of aggressive water bombardment resulted in more electrolyte leakage than leaves damaged by F. occidentalis, yet supported comparable S. enterica populations. Together, this study indicates that F. occidentalis feeding is one of the many potential biological mechanisms creating a more habitable environment for S. enterica.


Asunto(s)
Salmonella enterica/fisiología , Solanum lycopersicum/parasitología , Thysanoptera/fisiología , Alimentación Animal , Animales , Conducta Animal , Femenino , Microbiología de Alimentos , Solanum lycopersicum/microbiología , Masculino , Viabilidad Microbiana , Hojas de la Planta/microbiología , Hojas de la Planta/parasitología , Thysanoptera/microbiología
13.
Nat Commun ; 12(1): 619, 2021 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-33504808

RESUMEN

Although mutualisms are often studied as simple pairwise interactions, they typically involve complex networks of interacting species. How multiple mutualistic partners that provide the same service and compete for resources are maintained in mutualistic networks is an open question. We use a model bacterial community in which multiple 'partner strains' of Escherichia coli compete for a carbon source and exchange resources with a 'shared mutualist' strain of Salmonella enterica. In laboratory experiments, competing E. coli strains readily coexist in the presence of S. enterica, despite differences in their competitive abilities. We use ecological modeling to demonstrate that a shared mutualist can create temporary resource niche partitioning by limiting growth rates, even if yield is set by a resource external to a mutualism. This mechanism can extend to maintain multiple competing partner species. Our results improve our understanding of complex mutualistic communities and aid efforts to design stable microbial communities.


Asunto(s)
Escherichia coli/fisiología , Microbiota , Salmonella enterica/fisiología , Aminoácidos/biosíntesis , Modelos Biológicos , Salmonella enterica/crecimiento & desarrollo
14.
Int J Food Microbiol ; 339: 109034, 2021 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-33388710

RESUMEN

Increasing consumer demand for high-quality foods has driven adoption by the food industry of non-thermal technologies such as high pressure processing (HPP). The technology is employed as a post-packaging treatment step for inactivation of vegetative microorganisms. In order to evaluate HPP inactivation of Escherichia coli O157:H7, Salmonella enterica, and Listeria monocytogenes in acid and acidified juices and beverages, pressure tolerance parameters were determined using log-linear and Weibull models in pH-adjusted apple juice (pH 4.5) at 5 °C. A commercial processing HPP unit was used. The Weibull model better described the inactivation kinetics of the three tested pathogens. According to estimates from the Weibull model, 1.5, 0.9, and 1.5 min are required at 600 MPa to produce 5-log reductions of E. coli, Salmonella, and L. monocytogenes, respectively, whereas according to the log-linear model, 3.2, 1.8, and 2.1 min are required. The effects of process conditions were verified using commercial products (pH between 3.02 and 4.21). In all tested commercial juices or beverages, greater than 5-log reductions were achieved for all tested pathogens using HPP process conditions of 550 MPa for 1 min. These findings demonstrate that the HPP conditions of 600 MPa for 3 min, typically used by the food industry provide an adequate safety margin for control of relevant vegetative pathogens in acid and acidified juices and beverages (pH < 4.5). Results from this study can be used by food processors to support validation studies and may be useful for the future establishment of safe harbors for the HPP industry.


Asunto(s)
Fenómenos Fisiológicos Bacterianos , Manipulación de Alimentos/métodos , Microbiología de Alimentos/métodos , Jugos de Frutas y Vegetales , Viabilidad Microbiana , Presión , Ácidos , Bebidas/microbiología , Recuento de Colonia Microbiana , Escherichia coli O157/fisiología , Manipulación de Alimentos/normas , Jugos de Frutas y Vegetales/microbiología , Listeria monocytogenes/fisiología , Malus/microbiología , Salmonella enterica/fisiología
15.
Drug Dev Res ; 82(2): 198-206, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-32954547

RESUMEN

Due to the increasing problem of bacterial resistance worldwide, the demand for new antibiotics is becoming increasingly urgent. We wished to: (a) prepare hybrid molecules by linking different pharmacophores by chemical bonds; (b) investigate the antib acterial activity of these hybrids using drug-sensitive and drug-resistant pathogens in vitro and vivo. A series of hybrid molecules with a diester structure were designed and synthesized that linked amoxicillin and derivatives of benzoic acid via a methylene bridge. Synthesized compounds were evaluated for activities against Gram-positive bacteria (Staphylococcus aureus American Type Culture Collection [ATCC] 29213, ATCC 11632; methicillin-resistant S. aureus [MRSA] 11; Escherichia coli ATCC 25922) and Gram-negative bacteria (Salmonella LS677, GD836, GD828, GD3625) by microdilution of broth. Synthesized compounds showed good activity against Gram-positive and Gram-negative bacteria in vitro. In particular, amoxicillin-p-nitrobenzoic acid (6d) showed good activity against Salmonella species and had better activity against methicillin-resistant S. aureus (minimum inhibitory concentration [MIC] = 64 µg/ml) than the reference drug, amoxicillin (MIC = 128 µg/ml). Amoxicillin-p-methoxybenzoic acid (6b) had the best antibacterial activity in vivo (ED50 = 13.2496 µg/ml). The hybrid molecules of amoxicillin and derivatives of benzoic acid synthesized based on a diester structure can improve the activity of amoxicillin against Salmonella species and even improve the activity against MRSA.


Asunto(s)
Amoxicilina/síntesis química , Antibacterianos/síntesis química , Ácido Benzoico/síntesis química , Química Farmacéutica/métodos , Farmacorresistencia Bacteriana Múltiple/efectos de los fármacos , Salmonella enterica/efectos de los fármacos , Amoxicilina/farmacología , Animales , Antibacterianos/farmacología , Ácido Benzoico/farmacología , Farmacorresistencia Bacteriana Múltiple/fisiología , Femenino , Ratones , Ratones Endogámicos ICR , Salmonella enterica/fisiología
16.
Appl Environ Microbiol ; 87(2)2021 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-33127819

RESUMEN

The initial steps of Salmonella pathogenesis involve adhesion to and invasion into host epithelial cells. While well-studied for Salmonella enterica serovar Typhimurium, the factors contributing to this process in other, host-adapted serovars remains unexplored. Here, we screened clinical isolates of serovars Gallinarum, Dublin, Choleraesuis, Typhimurium, and Enteritidis for adhesion to and invasion into intestinal epithelial cell lines of human, porcine, and chicken origins. Thirty isolates with altered infectivity were used for genomic analyses, and 14 genes and novel mutations associated with high or low infectivity were identified. The functions of candidate genes included virulence gene expression regulation and cell wall or membrane synthesis and components. The role of several of these genes in Salmonella adhesion to and invasion into cells has not previously been investigated. The genes dksA (encoding a stringent response regulator) and sanA (encoding a vancomycin high-temperature exclusion protein) were selected for further analyses, and we confirmed their roles in adhesion to and invasion into host cells. Furthermore, transcriptomic analyses were performed for S Enteritidis and S Typhimurium, with two highly infective and two marginally infective isolates for each serovar. Expression profiles for the isolates with altered infection phenotypes revealed the importance of type 3 secretion system expression levels in the determination of an isolate's infection phenotype. Taken together, these data indicate a new role in cell host infection for genes or gene variants previously not associated with adhesion to and invasion into the epithelial cells.IMPORTANCESalmonella is a foodborne pathogen affecting over 200 million people and resulting in over 200,000 fatal cases per year. Its adhesion to and invasion into intestinal epithelial cells represent one of the first and key steps in the pathogenesis of salmonellosis. Still, around 35 to 40% of bacterial genes have no experimentally validated function, and their contribution to bacterial virulence, including adhesion and invasion, remains largely unknown. Therefore, the significance of this study is in the identification of new genes or gene allelic variants previously not associated with adhesion and invasion. It is well established that blocking adhesion and/or invasion would stop or hamper bacterial infection; therefore, the new findings from this study could be used in future developments of anti-Salmonella therapy targeting genes involved in these key processes. Such treatment could be a valuable alternative, as the prevalence of antibiotic-resistant bacteria is increasing very rapidly.


Asunto(s)
Células Epiteliales/microbiología , Salmonella enterica/fisiología , Animales , Adhesión Bacteriana , Línea Celular , Pollos , Células Epiteliales/fisiología , Genes Bacterianos , Humanos , Mutación , Fenotipo , Salmonella enterica/genética , Salmonella enterica/aislamiento & purificación , Serogrupo , Porcinos
17.
Avian Pathol ; 50(2): 132-137, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33146550

RESUMEN

Salmonella Gallinarum (SG) is an avian-restricted pathogen that causes fowl typhoid in poultry. Although it has been reported frequently over many decades in poultry flocks worldwide, the microorganism is more commonly associated with poultry in developing countries, particularly those with high ambient temperatures, where the acute form of the disease results in considerable economic losses. A more detailed investigation of environmental factors that affect the course of disease may assist in identifying effective prevention and control measures. Heat stress is known to impair the immunological response to a variety of pathogens and clearly may be an important contributory factor in the prevalence of disease in countries with warm or hot climates. Thus, the objective of the present study was to evaluate the effects of heat stress on chickens infected with SG. For this, light and semi-heavy commercial laying hens were distributed randomly within four groups as follows: infected and non-infected groups in rooms held at ambient temperature, and infected and non-infected groups under heat stress. Clinical signs, egg production, and mortality were recorded daily. Bacteriological counts in liver and spleen samples were estimated at 2, 5, 7, and 14 days post-infection. The results showed that both SG infection and heat stress had similar effects on egg production and a synergistic effect of the two stressors was observed. The data show an interaction between disease and heat stress which could point towards environmental and biosecurity approaches to resolving the possible 30% fall in production observed in such countries.


Asunto(s)
Pollos/fisiología , Respuesta al Choque Térmico , Enfermedades de las Aves de Corral/fisiopatología , Salmonelosis Animal/fisiopatología , Salmonella enterica/fisiología , Fiebre Tifoidea/veterinaria , Animales , Pollos/microbiología , Huevos , Femenino , Hígado/microbiología , Enfermedades de las Aves de Corral/microbiología , Salmonelosis Animal/microbiología , Bazo/microbiología , Fiebre Tifoidea/microbiología , Fiebre Tifoidea/fisiopatología
18.
Food Microbiol ; 94: 103616, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33279059

RESUMEN

The objective of this study was to characterize the biofilms formed by Salmonella enterica serotype Agona, Listeria monocytogenes, methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococcus faecium (VRE) after 12, 48, 72, 120 and 240 h of incubation at 10 °C. Biofilms containing a single species, together with dual-species biofilms in which S. enterica and a Gram-positive bacterium existed in combination, were formed on polystyrene and evaluated by using confocal laser scanning microscopy (CLSM). All strains were able to form biofilm. The greatest biovolume in the observation field of 14,161 µm2 was observed for mono-species biofilms after 72 h, where biovolumes of 94,409.0 µm3 ± 2131.0 µm3 (S. enterica), 58,418.3 µm3 ± 5944.9 µm3 (L. monocytogenes), 68,020.8 µm3 ± 5812.3 µm3 (MRSA) and 59,280.0 µm3 ± 4032.9 µm3 (VRE) were obtained. In comparison with single-species biofilms, the biovolume of S. enterica was higher in the presence of MRSA or VRE after 48, 72 and 120 h. In dual-species biofilms, the bacteria showed a double-layer distribution pattern, with S. enterica in the top layer and Gram-positive bacteria in the bottom layer. This spatial disposition should be taken into account when effective strategies to eliminate biofilms are being developed.


Asunto(s)
Biopelículas , Enterococcus faecium/química , Listeria monocytogenes/química , Staphylococcus aureus Resistente a Meticilina/química , Salmonella enterica/química , Enterococcus faecium/fisiología , Listeria monocytogenes/fisiología , Staphylococcus aureus Resistente a Meticilina/fisiología , Microscopía Confocal , Salmonella enterica/fisiología
19.
J Mol Biol ; 433(2): 166721, 2021 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-33227310

RESUMEN

Protein self-assembly is a common and essential biological phenomenon, and bacterial microcompartments present a promising model system to study this process. Bacterial microcompartments are large, protein-based organelles which natively carry out processes important for carbon fixation in cyanobacteria and the survival of enteric bacteria. These structures are increasingly popular with biological engineers due to their potential utility as nanobioreactors or drug delivery vehicles. However, the limited understanding of the assembly mechanism of these bacterial microcompartments hinders efforts to repurpose them for non-native functions. Here, we comprehensively investigate proteins involved in the assembly of the 1,2-propanediol utilization bacterial microcompartment from Salmonella enterica serovar Typhimurium LT2, one of the most widely studied microcompartment systems. We first demonstrate that two shell proteins, PduA and PduJ, have a high propensity for self-assembly upon overexpression, and we provide a novel method for self-assembly quantification. Using genomic knock-outs and knock-ins, we systematically show that these two proteins play an essential and redundant role in bacterial microcompartment assembly that cannot be compensated by other shell proteins. At least one of the two proteins PduA and PduJ must be present for the bacterial microcompartment shell to assemble. We also demonstrate that assembly-deficient variants of these proteins are unable to rescue microcompartment formation, highlighting the importance of this assembly property. Our work provides insight into the assembly mechanism of these bacterial organelles and will aid downstream engineering efforts.


Asunto(s)
Proteínas Bacterianas/metabolismo , Salmonella enterica/fisiología , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Regulación Bacteriana de la Expresión Génica , Técnicas de Silenciamiento del Gen , Orden Génico , Modelos Moleculares , Mutación , Unión Proteica , Conformación Proteica , Salmonella enterica/ultraestructura
20.
J Evol Biol ; 34(2): 256-269, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33108676

RESUMEN

The protection conferred by a first infection upon a second pathogenic exposure (i.e. immune priming) is an emergent research topic in the field of invertebrate immunity. Immune priming has been demonstrated in various species, but little is known about the intrinsic factors that may influence this immune process. In this study, we tested whether age, gender and the symbiotic bacterium Wolbachia affect the protection resulting from immune priming in A. vulgare against S. enterica. We firstly primed young and old, symbiotic and asymbiotic males and females, either with a non-lethal low dose of S. enterica, LB broth or without injection (control). Seven days post-injection, we performed a LD50 injection of S. enterica in all individuals and we monitored their survival rates. We demonstrated that survival capacities depend on these three factors: young and old asymbiotic individuals (males and females) expressed immune priming (S. enterica-primed individuals survived better than LB-primed and non-primed), with a general decline in the strength of protection in old females, but not in old males, compared to young. When Wolbachia is present, the immune priming protection was observed in old, but not in young symbiotic individuals, even if the Wolbachia load on entire individuals is equivalent regardless to age. Our overall results showed that the immune priming protection in A. vulgare depends on individuals' states, highlighting the need to consider these factors both in mechanistical and evolutionary studies focusing on invertebrate's immunity.


Asunto(s)
Interacciones Huésped-Patógeno/inmunología , Isópodos/inmunología , Salmonella enterica/fisiología , Wolbachia/fisiología , Factores de Edad , Animales , Femenino , Masculino , Factores Sexuales , Simbiosis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...